
ON THE PROBLEM OF A MINIMUM OF A FUNCTIONAL IN 

THE INVESTIGATION OF THE STABILITY OFMOTION 

OF A BODY CONTAINING FLUID 

PMM Vol. 31, No. 3. 1967. pp. 523-526 

V.A. SAMSONOV 

(Moscow) 

(Received March 25, 1966 ) 

In the paper by Rumiantsev [ I] there is proved a theorem according to which the stabilit 
of the steady rotation of a rigid body with a cavity which is filled with two incompressl 4 le 
homogeneous fluids requires that the functional 

51 -2 

has an isolated minimum FI’ for the unperturbed motion. 
Here kc is the moment o momentum of the whole system relative to the axis of rotation 4 

in the undtsturbed motion; S is the moment of inertia of the system relative to the same axis 
in the perturbed state; 7t, r2 are the volumes occupied by the fluids; pl, ~2 are the corres- 
ponding densities of the fluids; &,, fll, n2 are the potentials of the forces which are acting 

on the body and the fluids, respectively; u is the area of the interface of the fluids; gt, cr2 
are the areas of the wall in contact with the fluids; a, at a2 are the corresponding coeffi- 
cients of surface tension. It is assumed that both fluids are in equilibrium relative to the 
body for undisturbed motion. 

The existence of a weak minimum is a necessary condition for the minimum of the func- 
tional. The method of obtaining sufficient conditions for the weak minimum of the fonction- 
al W from a study of its second variation 8 9 W is set out below. 

l.The functional W clearly depends on the shape of the interface of the fluids (a) and 
on the coordinates qj (j = I,..., n - I) which describe the position of the body (except the 
cyclic one q ). The first variation of the functional W vanishes [I] for steady motion of the 
body which & described by Eqs. 

Qj = 0; Qn = tit, w = const 

Let the function 1, given on the undisturbed surface (a)u determine the deviation of the 
interface (0) from the unperturbed surface (a),. Then the second variation S2W in the gen- 
eral case must consist of three parts: a quadratic functional in 1, a quadratic form of the 
coordinates q1 and a functional linear in q, and in I i.e. 6’W can be put in the form 

6W -= Pl(U -t- Pz (1, q,) + u (q,), 

Pl (Q = (LL 0, P? (1, y;) = 2 (1, ‘D), (1, a) = s tPz da 

Here Ll is a linear operator, (0 is a function of the form ulql -I- . ..+ a,_Iq 
are certain functions given on the surface (o)u, U (q ) is the quadratic form 

1, where aI 

plicit form of the operator Ll and the functions @ an d 
o Ti. The ex- q 

V depend on the external orce and 
and the method of measuring the deviation 1. One of the possible forms is shown below as 
an example. Another form of these expressions may be found in [z]. 

Let the functional P 1, (or the operator L ) be positive definite. The corresponding condi- 
tions will be the first group of conditions for the weak minimum W. 
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One may reach a second set of conditions following the method set out in [3 and 41. The 
functional p + p, has e minimum for fixed q1 and this minimum f5] is found from the solu- 
tion i,(qj) of Eq. 

Li$- CD = co (1) 
((t, co) = 0 because the fluids are incompressible). Also 

Pi $ Pa = P1(1- h) .I- '/z p2 (21) 

It is clear that 
min (PI + Pz) = ‘/a’& (21) = (II, CD) 

Because Eq. (1) is linear, its solution It will be a linear function of qf and (it, @) will 
be a quadratic form of 9,. The second variation can be put in the form 

@W = P1 (1 - 11) + F (a$, P (qj) = (4, @) +u 
The following theorem can now be proved. 

T h 8 or8 m. If P , is a positive definite functional and V ( qj) is a positive definite quad- 
ratic form, then the functiona W has a minimum IF, for qi = 0, 13 0. 

Prao f. The difference between the values of the fnnctional I in the perturbed and the 
unperturbed states of the system may be pnseated in the form 

w-w,=8*W+8(llzn*+~lnii2), lI~I12=(U~), II q 11 a = 41% + . ..+ R-1 

where o + 0 if (11111 2 +llq II 2) + 0; or this csn be written after transformations as 

TV - W. = P (1 - II) + V (qj) + b ( II 1 - 4 II a + II q II ‘9 
whereb+Oif(lfl-IlIla +Iliw~ 

As assumed there exists a number d > 0 such that 

F(Qj)>d/JqIj’ 
We will choose a number a > 0 such that 

Then 
I b I < min N8, Va& npn II I II 1 -I- II 11 II ’ -f- II q II * < e 

W - WO > V, II 1 - E, II 2 + Vpd II 9 II 2 > 0, if II l II a -I- II q II ’ # 0 
i.o. IF ha8 a minimum W’o for q1 = 0, I = 0. 

In order to construct the function Y it is not necessary to solve Eq. (1). The coefficient8 
of this quadratic form may be determined by any of the direct methods (e.g. Ritz’s); this re- 
quires the minimization of the functional P 1 + P, for fixed 41. 

2. Let us consider the problem of the motion of a rigid body with a fixed point 0 under 
the action of the uniform gravitational force with acceleration g. Let us in:roduce the coor- 
dinate axes y,, yF ya which are fixed, where ~,a is along the upward vertical. The axes x1 
x2, ra which are lxe in the body are the princrpal axes of the ellipsoid of inertia at the 
point 0. Polar coordinates t, ip are also introduced in the plane x1 s2. 

We assume that the steady motion is a rotation of the body and the fluids in the cavity 
with constant angnlar velocity o about the axis x3 which coincides with the axis y . 

For simplification of the calculations we will consider that the cavity is formed ?.l y a snr 
face of revolution about the s3 axis. The equation of this surface is za = $ (r); The surface 
which separates the fluids in the cavity is also a earface of revolution with equation x3 = 
= f(r). Then the axe8 X, will be the principal axes of inertia for the whole system in the un- 
perturbed motion. The fluid with density pt is below the surface of separation. 

Let f be a single-valued function with bounded first and second derivatives. In this ca8e 
we may taLe the deviation I (r, (p) as the displacement of the sarface of separation along the 

= h(r, V) is the equation of the surface of separation in the perturbed state 

P = p1--2, 

Q (4 = a2 (c - A) - Mgss,,, Yi = CM (YS. =*) 
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Here M is the mass; x3, 
f 

is the coordinate of the centre of gravity; A, B, C are the prin- 
cipal moments of inertia re ative to the axes x1, x2, xg of the whole system taken as a sin- 
gle body in the undisturbed motion; (f2f is the region bounded by the circle r which is the 
projection on the plane x1, z of the line of intersection of the surface of separation with 
the wall of the cavity. Partia 1 derivatives with respect to r, 9 are subscripted. For an un- 
perturbed motion y1 = yz = 0. 

It is clear that P t will be a positive definite functional if 

Pl > Pa, P60 

Eq. (1) will have the form 

Ll = fJ@ - a [+- (rl, UiS), + $ I,, rrl] + 

rxp%G 

+ c 
r21 dQ = - p (g -+ oafI r (r~ co.9 q 5 +rr sin cp) + CO 

(2) 

The quantity co and the term containing the integral will vanish at the minimum so these 
can be omitted immediately. The boundary condition for the solution of this equation is 

I, - pl = 0 jr 

Since the operator L is linear the solution for I,, may be split into two parts. 

II = yr u (r) cos g, + ya v (r) sin ip 
For IA (r) and o(r) we will have the same equation 

L,u = - P (g + W) r, cos cp L,u = L (u co9 cp) 

with boundary condition 
r$. = pu Ir=R 

(3) 

The quadratic form V now takes the form 
R 

3’ = ~1” [Q (:i) -t_ npv] + %? [Q (B) + jlpv], v = 
s 

(g + 0”f) Uf!J d;* 

0 

When the solution of Eq. (3) is substituted &to V we get the condition for it being posi- 
tive definite, 

m2 (C - A) - 1Mg Qi + npv > 0, A>,B (4) 
Conditions (2) and (4) assures a weak minimum for A, in this problem. 
In the case of no surface tension (a = 0) this condition corresponds to an analogous case 

in [ 31. 
The numerical calculation of v in a specific problem may be performed using the Ritz 

method and taking the Bessel functions I t( X, t) as coordinates. The number h, is the solu- 
tion of Eq. 

Here R is the radius of the circle r. The Ritz system has then the form 
R R 

2 ‘lbij = ‘i? 21,; = S [LJ1 (hir)]J1 (h,r) r dr, cj = - _ (g -I- 02f)J1 (hjr) r2dr c 
i 

and for v we get 
i? 5 

v = -)-J aici 

i 

Let the cavity be cylindrical with radius R = 1. The surface of separation is at a finite 
distance from the end of the cavity. The parameters p, g, a, at, u2 are such that the sur- 
face of separation for equilibrium of the body is given by the curve in Fig. 5 of the paper 
[6] for ‘VI- 1. _ 

Calcu ation of v by the Ritz method gives for the first and second approximations: 

v1 = - 0.236, v, = - 0.245 

These values are very close to one another and a rapid convergence is likely. Unfortu- 
nately, these values of v are in error although they are sufficiently accurate for practical 
applications. 

Consider now the case where the value v is found analytically. 
In [?I there is shown the form of the surface (o),, at equilibrium (0 = 0) with the coef- 
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ficient a assumed small. The zurface (c)u in this case is a horizontal plane except for a 
circular region of width 
b) 

- 1/& near the wallof the cavity where the maximum distance of 
from this plane is a value of the order 

+h 
va, and fr-1. 

e quantity v can be calculated in this case with the accuracy up to the terms of first 
order in a. In a cylindrical cavity, since (I,,@) = v (yi* i- ~0’) the value of v can be con- 
sidered as a minimum of the functional 

We will assume the functions u and u 
only in the region of width - 1/$, h fig’ 

which are minimized, are bounded. Since f, $ 0 

t e unctional W, may be replaced by the functional 
R 

wz = s[ 
0 

gu” + $ u,2 + -;?i- ug 1 )t_argu]rdr 

with the accuracy up to the terms of the first order in a. The minimizing function for W, 
clearly has the form 

u.2 = 
11 (Xr) 

-’ +(,I,,) Zr(hR)’ h2=pg/a 

and with first older accuracy 
v= - 'l&R'+CdP/p 

Functionals W, and Wz will be identical if the surface,(O) is a plane. In the calculation 
of the coordinates of the centre of P 
dered plane and the curvature intro P 

avity xg o, the surface o 
uces a c&rection 

separation may also be consi- 
- a%. This indicates that for a small 

surface tension the curvatures at the wall may be neglected and they only affect terms of 
higher order. 
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